Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Clin Med ; 10(5)2021 Mar 03.
Article in English | MEDLINE | ID: covidwho-1125750

ABSTRACT

The outbreak of the novel coronavirus SARS-CoV-2 epidemic has rapidly spread and still poses a serious threat to healthcare systems worldwide. In the present study, electronic medical records containing clinical indicators related to liver injury in 799 COVID-19-confirmed patients admitted to a hospital in Madrid (Spain) were extracted and analyzed. Correlation between liver injury and disease outcome was also evaluated. Serum levels of Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), Gamma-glutamyltransferase (GGT), Alkaline phosphatase (ALP), Lactate dehydrogenase (LDH) and AST/ALT ratio were elevated above the Upper Limit of Normal (ULN) in 25.73%, 49.17%, 34.62%, 24.21%, 55.84% and 75% of patients, respectively. Interestingly, significant positive correlation between LDH levels and the AST/ALT ratio with disease outcome was found. Our data showed that SARS-CoV-2 virus infection leads to mild, but significant changes in serum markers of liver injury. The upregulated LDH levels as well as AST/ALT ratios upon admission may be used as additional diagnostic characteristic for COVID-19 patients.

2.
Biomed Pharmacother ; 137: 111384, 2021 May.
Article in English | MEDLINE | ID: covidwho-1082719

ABSTRACT

Antiviral agents with different mechanisms of action could induce synergistic effects against SARS-CoV-2 infection. Some reports suggest the therapeutic potential of the heme oxygenase-1 (HO-1) enzyme against virus infection. Given that hemin is a natural inducer of the HO-1 gene, the aim of this study was to develop an in vitro assay to analyze the antiviral potency of hemin against SARS-CoV-2 infection. A SARS-CoV-2 infectivity assay was conducted in Vero-E6 and Calu-3 epithelial cell lines. The antiviral effect of hemin, and chloroquine as a control, against SARS-CoV-2 virus infection was quantified by RT-qPCR using specific oligonucleotides for the N gene. Chloroquine induced a marked reduction of viral genome copies in kidney epithelial Vero-E6 cells but not in lung cancer Calu-3 cells. Hemin administration to the culture medium induced a high induction in the expression of the HO-1 gene that was stronger in Vero-E6 macaque-derived cells than in the human Calu-3 cell line. However, hemin treatment did not modify SARS-CoV-2 replication, as measured by viral genome quantification 48 h post-infection for Vero-E6 and 72 h post-infection for the Calu-3 lineages. In conclusion, although exposure to hemin induced strong HO-1 up-regulation, this effect was unable to inhibit or delay the progression of SARS-CoV-2 infection in two epithelial cell lines susceptible to infection.


Subject(s)
Antiviral Agents/pharmacology , Heme Oxygenase-1/metabolism , Hemin/pharmacology , SARS-CoV-2/drug effects , Animals , COVID-19 , Cell Line , Cells, Cultured , Chlorocebus aethiops , Chloroquine/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Lung/drug effects , Vero Cells , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL